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Imprinted Expression of Neuronatin from Modified
AC Transgenes Reveals Regulation by Distinct
nd Distant Enhancers
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Neuronatin (Nnat) is an imprinted gene that is expressed exclusively from the paternal allele while the maternal allele is
ilent and methylated. The Nnat locus exhibits some unique features compared with other imprinted domains. Unlike the
ajority of imprinted genes, which are organised in clusters and coordinately regulated, Nnat does not appear to be closely

inked to other imprinted genes. Also unusually, Nnat is located within an 8-kb intron of the Bc10 gene, which generates
a biallelically expressed, antisense transcript. A similar organisation is conserved at the human NNAT locus on
chromosome 20. Nnat expression is first detected at E8.5 in rhombomeres 3 and 5, and subsequently, expression is
widespread within postmitotic neuronal tissues. Using modified BAC transgenes, we show that imprinted expression of
Nnat at ectopic sites requires, at most, an 80-kb region around the gene. Furthermore, reporter transgenes reveal distinct and
dispersed cis-regulatory elements that direct tissue-specific expression and these are predominantly upstream of the region
that confers allele-specific expression. © 2001 Academic Press
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INTRODUCTION

Genomic imprinting is a unique mode of transcriptional
regulation in which the expression of specific mammalian
genes is dictated by epigenetic modifications established in
the male or female germ line (Surani, 1998). Approximately
40 imprinted genes have been identified, some of which
play an essential role in embryonic development (DeChiara
et al., 1991; Guillemot et al., 1994; Yan et al., 1997; Zhang
et al., 1997) and behaviour (Lefebvre et al., 1998; Li et al.,
1999). Many imprinted genes are located within specific
chromosomal regions which were identified by genetic
noncomplementation experiments (Beechey and Cattan-
ach, 1996; Cattanach and Jones, 1994). Studies of human
genetic disorders and experiments in mice suggest that
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imprinted genes are usually found in clusters and coregu-
lated within these domains (Buiting et al., 1995; Hoovers et
al., 1995; Leighton et al., 1995; Wutz et al., 1997). A number
of imprinted but noncoding transcripts have also been
identified within these regions which may be mechanisti-
cally involved in the reciprocal imprinting of oppositely
expressed genes (Lee, 2000; Lee et al., 1999; Smilinich et al.,
1999; Wutz et al., 1997).

We, and others, initially identified neuronatin (Nnat) in a
screen for paternally expressed genes and showed that, like
the majority of imprinted genes studied, the silent (mater-
nal) allele was methylated (Kagitani et al., 1997; Kikyo et
al., 1997). Nnat was also identified in other screens for
enes involved in neural development and differentiation
Joseph et al., 1994). Expression of Nnat is first detected at
8.5 days of embryonic development (E8.5) with segmental
expression in the developing hindbrain and subsequently
throughout the postmitotic central nervous system (Dou
and Joseph, 1996; Joseph et al., 1994; Wijnholds et al., 1995).
Nnat is also expressed in nonneuronal tissues derived from

the mesoderm: the limb mesenchyme, the pancreas, the
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388 John et al.
paraxial mesoderm, and in the somites. Nnat encodes three
utative proteins with an amino acid composition suggest-
ng an association with transmembrane complexes but the
recise function of Nnat is unknown.
Nnat lies on distal mouse chromosome 2 approximately

8 cM proximal to the breakpoint T2Wa. Nnat is therefore
ocated outside a previously defined imprinted region be-
ween T2Wa and T28H (Kikyo et al., 1997; Williamson et
l., 1998). This region contains a cluster of imprinted
ranscripts, Gnas, Gnasxl, and Nesp (Peters et al., 1999).

FIG. 1. Organisation of the Nnat locus. (A) Physical map of Nnat
of transcription shown by the arrow. The contig spans approximatel
by 2C-95 and 2C-270. (B) Structure of the Nnat locus. The Nnat g
grey boxes) spans the Nnat gene. The active paternal Nnat allele is u
closed circles) at the sites indicated. The DMR is shown as an open
alleles. B, BamHI; Bs, BssHII; E, EagI; S, SacII; H, HindIII; A, AvrII; a
gene. Two islands are present, one associated with Nnat and a sec
nat marks the position of a novel imprinted region which i

Copyright © 2001 by Academic Press. All right
s distinct from this cluster. It is therefore unlikely to
ontribute to the developmental defects and lethality asso-
iated with either maternal or paternal disomy distal to
2Wa (Cattanach and Kirk, 1985). Differences in Nnat
xpression may instead be involved in other aspects of
evelopment, including a role in cerebellar folding (Kikyo et
l., 1997).
One of our objectives has been to determine how various

mprinted genes are regulated. Previously, we showed that a
30-kb yeast artificial chromosome (YAC) spanning the

. The Nnat gene is indicated by the filled black box with direction
kb of genomic DNA. N, NotI; S, SrfI. Modified BACs are indicated

pans 2.4 kb of genomic DNA and three exons (black boxes). Bc10
thylated (open circles), and the silent maternal allele is methylated
The CpG island overlaying exon I of Bc10 is unmethylated on both
, XhoI. (C) CpG plot analysis of 20 kb of sequence around the Nnat
island associated with the Bc10 gene.
BACs
y 280
ene s
nme
box.
nd X
mprinted genes H19 and Igf2 contained the cis-regulatory
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389Imprinting of Neuronatin
elements that are required for the initiation and mainte-
nance of parent-of-origin-dependent monoallelic expression
at ectopic sites (Ainscough et al., 1997). One other region
has been explored in a similar way by using a 300-kb YAC
spanning the 100-kb Igf2r gene (Wutz et al., 1997). In both
hese cases, genes expressed from the maternal and the
aternal allele are present on the transgenes. Imprinting of
he mouse Igf2r gene is apparently dependent on the pres-

ence of an intergenic CpG-rich sequence which shows
parental-specific methylation. This marks the start position
of the oppositely imprinted transcript which is untranslated
and antisense to Igf2r (Wutz et al., 1997). Much smaller
transgenes have been used to identify cis-control elements
in the immediate vicinity of single genes, particularly H19
(Bartolomei et al., 1993; Brenton et al., 1999; Elson and
Bartolomei, 1997; Pfeifer et al., 1996), none of which
imprint reliably. However, analysis of imprinted genes such

FIG. 2. Characterisation of the Bc10 gene. (A) RT-PCR analysi
ndrogenetic (AG), parthenogenetic (PG), controls (AGc and PG
ild-type embryos (WT, CBA 3 C57Bl6). The middle panel shows e
NA as expected. The lower panel shows shows expression of Bc1

embryos (WT). Bc10 is present in all samples at levels similar to
nalysis of the Bc10 and Nnat CpG islands. The SacII and EagI sites
ybridisation of a 1.6-kb SacII–HindIII probe isolated in the CpG i

EagI (lane 2) or SacII (lane 3). All three sites spanned by this probe
obtained when a 1.1-kb SacII–HindIII fragment originating at the
expression. The left and right panels show Northern blots of poly(A
blot has lanes for E7, E11, E15, and E17 of gestation. The adult blot
skeletal muscle; T, testis. There is a strong expression of a 2.2-kbp
as Nnat, which apparently exist as single loci and not as

Copyright © 2001 by Academic Press. All right
part of a cluster, may provide further insight into the
mechanism of imprinting.

MATERIALS AND METHODS

Isolation of Genomic Clones Containing the
Murine Nnat Locus

Four BAC clones, 83K24, 142N16, 137P16, and 137N24, were
isolated by screening a Genome Systems 129 gridded pBeloBAC
library with a 1.4-kb fragment from the Nnat cDNA (gift of F.
shino). BACs were characterised by NotI and SrfI digestion of BAC

DNA, pulse-field gel electrophoresis (Pharmacia Gene Navigator),
and standard Southern blotting. BAC and plasmid DNA were
isolated from liquid culture by alkaline lysis (Sambrook et al.,
1989). Genomic Southerns were prepared and hybridised as previ-
ously described (Kikyo et al., 1997). Sequence was analysed by

Bc10 expression. The upper panel shows expression of Bc10 in
ild-type embryos generated by pronuclear transfer), and control
ssion of Nnat in AG, AGc, PGc, and wild-type RNA but not in PG

aternal disomy (MD), paternal disomy (PD) embryos, and control
control samples, indicating biallelic expression. (B) Methylation
in the Bc10 CpG island are unmethylated. The upper panel shows
screen to genomic DNA digested with HindIII (lane 1) and either
nmethylated. The lower panel shows the differential methylation
t CpG island was used as a probe. (C) Northern analysis of Bc10
A from embryonic and adult tissues, respectively. The embryonic

ains: H, heart; B, brain; Li, liver; Lu, lung; K, kidney; S, spleen; Sk,
script seen in most tissues and developmental stages.
s of
c, w
xpre

0 in m
the
with

sland
are u
NNa
)1 RN
cont
using the CpG plot of EMBOSS software available from the Sanger
Centre.
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Bc10 Expression Analysis

Embryos containing maternal-only or paternal-only chromo-
somes were generated by pronuclear transfer (Barton, 1987). Em-
bryos disomic for murine chromosome 2 proximal to T2Wa were
generated as previously described (Kikyo et al., 1997) from mice
carrying a Robertsonian translocation of T2Wa to chromosome 8.
RT-PCR was performed as previously described (Ainscough et al.,
1997). Bc10 primers for the androgenetic and gynogenetic RT-PCR
were 59-GTCTTGTCTGAACCACCTTGG and 59-TGGATA-
CAGTGTAGTTCAATGTC which produce an 808-bp product.
PCR conditions: 1 min denature at 95°C and (95°C for 15 min/60°C
for 15 min/72°C for 45 min) over 25, 30, and 35 cycles. Bc10
primers for the disomy RT-PCR were 8648: 59-CGCTGA-
CACTAGTGCACACA and 9148: 59-TCACTTCCAACCCC-
TTTCCT which produce a product of 0.5 kb. PCR conditions: 1
min denature at 95°C and (95°C for 60 min/60°C for 60 min/72°C
for 60 min) for 30 cycles. Nnat primers were CGGCAGAACTGCT-
CATCATCG and 59-CTCCAGGAGCTTACAATCTAG. PCR con-
ditions: 1 min denature at 95°C and (95°C for 15 min/60°C for 15
min/72°C for 45 min) over 25, 30, and 35 cycles. The Northern
blots were obtained from Clontech and hybridised under standard
conditions to a 2.0-kb Bc10 cDNA fragment (Sambrook et al.,

FIG. 3. Nnat expression in limb buds is controlled by proximate e
construct (top) and the Nn-39 construct (bottom). The black (codin
boxes indicate the position of Bc10. The blue boxes indicate the repo
Nn-59 contains enhancers for Nnat expression in the limb buds an
the submandibular glands and the genital tubercle at E13.5 (not sh
transgene. The nearest Nnat enhancers for expression at this stage
1989).

Copyright © 2001 by Academic Press. All right
Construction of Plasmid-Based Transgenes
Nn-59 and Nn-39: IRESlacZpolyA (Li et al., 1997) was blunt

ligated into the XhoI site of a 13-kb EcoRI–XhoI genomic fragment
from upstream of the Nnat gene to generate Nn-59. The insert was
isolated after NotI digestion, gel purified (QIAquick, Qiagen), and
injected at 0.5 ng/ml. A 7.6-kb BamHI–NotI genomic fragment was
blunt ligated into the SpeI site downstream of globin-lacZpA to
generate Nn-39, and a BamHI fragment was used to generate
transgenic embryos. Copy number was determined by comparing
the intensity of hybridisation of a 0.5-kbNnat cDNA probe from
the 59 end of the 1.4-kb cDNA to the endogenous locus (two copies)
and the transgene by using a PhosphorImager.

Modification of BAC-Based Transgenes
The two-colour IRESbgeo-loxP-Plap cassette was constructed as

follows: IRESbgeo was excised from pIRES-bgeo (Mountford et al.,
1994) and cloned into an EcoRV site of pPolyIIID. A loxP linker was
cloned into the unique NotI site in the polylinker (GAGCT-
CACCTAGGTATCTAGCCTAGGATAACTTCGTATAGCATA-
CATTATACGAAGTTATCTAGAACCGGTGACGTCACCATG-
GGAAGCTTCGTGGATCCATAACTTCGTATAGCATACATT-

cers that lie outside the Bc10 gene. (A) Representation of the Nn-59
d white (untranslated) boxes represent the Nnat gene and the grey
genes. (B, C) Whole-mount lacZ stains of transgenic E11.5 embryos.
epithelium over the nasal cavity at E11.5 and the palatal shelves,

. No expression was observed in 11 embryos containing the Nn-39
velopment lie between 21.55 and 213.0 kb of the Nnat promoter.
nhan
g) an
rter

d the
own)
ATACGAAGTTATCGCCTAGGAATTCC). A 2.5-kb human

s of reproduction in any form reserved.
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392 John et al.
placental alkaline phophatase cDNA with an upstream IRES
sequence was ligated into a unique SalI site provided by the loxP
linker. A 2.7-kb Nnat SpeI fragment was cloned into pBS II SK and
a loxP-AvrII linker (oligonucleotide 1, ACTATAACTTCGTAT-

GCATACATTATACGAAGTTATCCTAGG and oligonucleo-
ide 2, AGTCCTAGGATAACTTCGTATAATGTATGCTATAC-
AAGTTTAT) cloned into a unique HinfI site. A 2.7-kb SpeI

ragment from the 59 region of Nnat was cloned upstream to extend
9 homology. An XhoI–SpeI digest of this clone was ligated into the
otI site in IRESbgeo-loxP-IRESPlap cassette. A XhoI–BamHI (5.8

kb) from downstream Nnat was ligated into the SrfI site down-
steam of Plap to provide 39 homologous sequence. The Nnat-
IRESbgeo-loxP-IRESPlap construct was cloned into the SalI site of
pSV1.RecA which was transformed into chemical competent bac-
teria containing the target BAC clone (Yang et al., 1997). Cointe-
grant and resolved clones were detected by Southern analysis of
AvrII-digested DNA obtained by alkaline lysis from 2-ml cultures.

Analysis of Transgenic Animals

Transgenic founders were generated by pronuclear injection of
the SrfI (2C-95) or lterminase (2C-270) linearised DNA or lin-
arised Nn-59 and Nn-39 as previously described (Ainscough et al.,
997). Genomic DNA was extracted as described (Hogan et al.,
994) from yolk sacs, tail tips, or whole embryos. Transgenic lines
ere characterised by hybridisation of Southern blots of AvrII-

digested genomic DNA with a 1.5-kb BamHI–BssHII fragment
which lies 59 to exon I of Nnat and 59 to the loxP-AvrII site in the
transgene. Copy number was determined by comparing the inten-
sity of hybridisation of this fragment to the endogenous locus (two
copies) by using a PhosphorImager. A comparison of hybridisation
signal of transgene end probes derived from the BAC vector was
made to confirm the integrity of the transgene integrations. Fluo-
rescent in situ hybridisation was used to map the integration sites
f the BAC transgenes. Splenocytes were derived from heterozy-
ous adult transgenic animals. Metaphase chromosome spreads
ere prepared from splenocytes by standard procedures and FISH

nalysis performed as described (Ainscough et al., 1997) by using
BAC clone 142N16. FISH signals were visualised by confocal
fluorescent microscopy.

In Situ Hybridisation and Histology

In situ hybridisation was performed by using a 1.4-kb fragment
of the mouse Nnat cDNA. Sense and antisense RNA probes were
prepared by in vitro transcription using the DIG RNA labelling kit
Boehringer Mannheim). Saggital and transverse sections (10 mm)
rom transgenic mouse embryos at E11.5 and E13.5 were used for in
itu hybridisation. Briefly, embryos were fixed in 4% paraformade-
yde at 4°C overnight, sections made, and hybridised with the
robes overnight at 65°C. The sections were washed at 65°C and
ncubated with preadsorbed alkaline phosphatase-conjugated anti-
IG antibody overnight at 4°C. Alkaline phosphatase activity was
etected by using BM purple AP substrate (Boehringer Mannheim)
nd counterstained with 0.5% eosin. No signal was detected with
he sense probe. For whole-mount lacZ staining, embryos were
issected free of extraembryonic tissues and fixed for 1–3 h in
ormaldehyde (2%), glutaraldehyde (0.2%), NP-40 (0.02%), MgCl2

(1 mM), and sodium deoxycholate (20 mM) at 4°C and washed three
times in PBS before staining for 16 h at room temperature in
b-galactosidase (0.4 mg/ml), potassium ferricyanide (4 mM), potas-

sium ferrocyanide (4 mM), MgCl2 (2 mM) in PBS. At E13.5 and B

Copyright © 2001 by Academic Press. All right
15.5, a midsaggital incision was made midway through fixation to
acilitate penetration of the stain. Embryos were washed exten-
ively in PBS poststaining, fixed overnight in 4% formaldehyde,
nd cleared in 70% ethanol. LacZ-stained embryos were dehy-
rated through ascending alcohol series, cleared in xylene, and
mbedded in fibrowax (BDH). Saggital and transverse sections were
ade at 8 mm thick, mounted on slides, dewaxed, and rehydrated in
ater through descending alcohol series and counterstained with
% eosin. Mounted sections were photographed under dark field
here the lacZ signal is pink.

RESULTS

We previously identified Nnat as an imprinted gene that
marked the position of an unexplored imprinted region
outside the previously defined domains (Kikyo et al., 1997).
We therefore physically characterised the Nnat locus and
initiated a transgenic analysis to identify the cis-elements
esponsible for tissue-specific and allele-specific regulation
f this gene.

Neuronatin Lies within the Intron of a Second,
Biallelically Expressed Gene, Bc10

We initially constructed a physical map of Nnat region.
Figure 1A shows four overlapping mouse bacterial artificial
chromosomes (BACs) which were isolated and character-
ised by pulse-field gel electrophoresis (PFGE). The exon–
intron boundaries for Nnat were determined from 20 kb of
equence surrounding the gene (Fig. 1B; GenBank Accession
o. AF303656). We previously described the maternal

llele-specific methylation of this gene. We now show that
he differentially methylated region (DMR) of the Nnat
ene lies within a CpG island spanning exon I and extend-
ng into intron 2 (Fig. 1B).

Our sequence analysis of the region revealed an unusual
rrangement between Nnat and a second gene, Bc10 (Gro-
ova et al., 1999). Nnat was contained within the 8-kb

ntron of the Bc10 gene and this was transcribed in the
pposite direction to Nnat (Fig. 1B). We submitted our 20 kb
f sequence to a CpG prediction program (CpG plot) which
evealed that both genes were associated with CpG islands
Fig. 1C). Given the close proximity of these two genes, we
rst examined the expression of Bc10 in embryos with a
aternal-only genome (androgenetic), a maternal-only ge-
ome (parthenogenetic), and in embryos with reciprocal
aternal or paternal translocations of proximal chromo-

ome 2 (T2Wa; Fig. 2A). The Bc10 transcript was present in
ll the samples. Nnat, as expected, was present only in
ndrogenetic cDNA. These results suggest that, unlike
nat, Bc10 is bilallelically expressed. In addition, the CpG

sland spanning exon I of the Bc10 gene was found to be
nmethylated at all the restriction enzyme sites we tested
ithin the predicted island (Fig. 2B, upper panel; CfoI sites,
ata not shown) in contrast to the differential methylation
een at the Nnat CpG island (Fig. 2B, lower panel). A 2.1-kb

c10 transcript was detected by Northern analysis from

s of reproduction in any form reserved.
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393Imprinting of Neuronatin
embryonic day 7 (E7) onwards with expression continuing
into adulthood where expression was detectable in a wide
range of tissues (Fig. 2C). This contrasted with Nnat, whose
xpression is limited from an early stage to neural tissue,
ncluding the pituitary, with postnatal downregulation of
xpression (Kikyo et al., 1997). Therefore, despite the inti-
ate arrangement of these two genes, they do not appear to

hare regulatory elements either for tissue-specific expres-
ion or for allele-specific expression.

Neuronatin Appears to Be an Isolated Imprinted
Gene

In order to identify additional DMRs and their imprinted
genes, a CpG-island cloning strategy was applied within the
280-kb BAC contig (John et al., 1994). These CpG-rich

MRs resemble CpG islands and are characteristic of
mprinted genes (Razin and Cedar, 1994). CpG islands have
een found to almost always contain one or more EagI and
acII restriction enzyme sites (Bickmore, 1992). Therefore
e isolated 14 unique genomic clones adjacent to EagI and
acII restriction enzyme sites from the BAC clones. The in
ivo methylation status of these sites was determined by
outhern analysis and the clones were partially sequenced

data not shown). Only two sites showed differential meth-
lation (example in Fig. 2B, lower panel). The sequence of
hese clones showed that both were derived from the Nnat
MR. A cluster of three clones detected unmethylated sites
ithin a second CpG island (example in Fig. 2B, upper
anel). This island was associated with the 59 exon of the
c10 gene. Sequence analysis of the remaining nine clones
id not reveal the presence of any additional CpG islands or
atches any known genes or expressed sequence tags

ESTs) in any database suggesting that no other CpG island
ssociated genes were present in the 280-kb region scanned.
This approach does not rule out the presence of genes that

ack CpG islands. However, while approximately 40% of
onimprinted genes lack CpG islands, all imprinted genes
eem to be associated with at least one CpG island (On-
ango et al., 2000). A recent comparative analysis between
ouse and human of a 1-megabase imprinted region (mouse

istal 7/human 11p15) revealed the presence of one or more
pG islands associated with all nine imprinted genes in the

egion. Indeed, eight of the nine imprinted genes were
ssociated with two or more CpG islands sequences. This
lso appears to be the case for imprinted genes on other
hromosomes (Brandeis et al., 1993; Shemer et al., 1997;

Wutz et al., 1997). As we identified two clones from the
Nnat CpG island and three clones from the Bc10 CpG
island, we believe we have identified all the possible CpG
islands in the 280-kb region scanned. In addition, other
systematic studies have failed to identify additional im-
printed genes in the mouse distal chromosome 2 region
based on the methylation status of additional restriction
enzyme sites (Kelsey et al., 1999). Therefore, Nnat does not
appear to be closely linked to other imprinted genes.
While this work was in progress, 200 kb of sequence
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around the human NNAT locus became available
(AL109614). This sequence, which extends 62 kb upstream
of NNAT and 130 kb downstream, had previously been
scanned for EST matches and CpG islands. This revealed
the conserved organisation of the NNAT and BC10 genes
and their CpG islands. In addition to NNAT and BC10, two
other gene-like sequences were present, neither of which
are associated with CpG islands. The first sequence lies 2.2
kb upstream of BC10 and has homology to peptidyl prolyl
isomerase A (PP1A). The second sequence, 36 kb upstream
of BC10, has homology to glutaredoxin (GLRX). Neither of
hese loci have matching EST transcripts within the public
atabases and they both contain frameshift/stop codons.
oth appear to be nontranscribed pseudogenes. In addition,
n equivalent mouse homologue of the PP1A psuedogene
oes not appear to be present on the mouse Nnat BAC
ontig. Low-stringency hybridisation was performed to the
evel at which we could detect Bc10 and Nnat homologues
cross species but no signal was seen on BAC Southerns
ith a mouse Pp1a probe (data not shown). Although we

annot absolutely exclude the presence of imprinted genes
urther away, this work does suggest that Nnat is the only
mprinted gene within the region we have analysed.

Elements External to the Bc10 Gene Regulate Nnat
Expression

We initiated our characterisation of the Nnat gene by
asking whether its regulatory elements were in close prox-
imity, perhaps even within the Bc10 intron. Two reporter
transgenes, Nn-59 and Nn-39, were constructed (Fig. 3A).

n-59 contained a 13.6-kb EcoRI–XhoI genomic fragment
rom upstream of the Nnat gene which was placed up-
tream of an IRESlacZpolyA reporter. Nn-39 contained a
.1-kb BamHI genomic fragment which was placed down-
tream to a globin-lacZpA reporter. A transient transgenic
ssay was performed with Nn-59 and reporter expression
as examined at E11.5. One embryo showed marked ex-
ression in the limb buds characteristic of the endogenous
xpression pattern of Nnat (Fig. 3B). We went on to generate
ight transgenic lines with this construct. Only three of
hese lines showed expression of the reporter and this was
onsistent with the expression seen in the transient assay
see later). One of these was a single copy line and two had
ntegrated multiple copies of the transgene. At E13.5, ex-
ression was additionally observed in the submandibular
lands, part of the palatal shelf and the genital tubercle. By
ontrast, no specific expression was observed with Nn-39 in
transient transgenic assay with 10 independent integra-

ion events (Fig. 3C). Therefore, the nearest Nnat enhancers
ie in a region between 1.55 and 13 kb upstream of the
romoter and are external to the Bc10 gene.

Expression of Nnat from Modified BACs Reveals
Distinct and Dispersed Enhancers

The small Nnat transgenes were prone to silencing and

ectopic expression which is known to occur with this size
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FIG. 5. Nnat enhancers lie more than 25 kb upstream of the gene. (A) Ventral view of whole-mount lacZ-stained pregerm line E11.5
embryo, 2C-270P. (B) Ventral view of E11.5 whole-mount lacZ-stained embryo from line 2C-95B. Expression in the fore and hind limbs (fl
and hl) and in the lamina terminalis (lt) is seen with both transgenes but only 2C-270 directs widespread expression in the forebrain (fb) and
strong expression in the somites (s). (C) Whole-mount lacZ stain at E8.5 (7 somites) of line 2C-270A revealing expression in rhombomeres
3 and 5 (r3 and r5) and in Rathke’s pouch. (D) Midsaggital head section of lacZ-stained line 2C-95B embryo at E13.5. (E) Midsaggital full
section of lacZ-stained line 2C-270A embryo at E13.5. There is overlapping expression from both transgenes within Rathke’s pouch (rp) and
the hypothalamus (h). 2C-270 additionally directs expression in all postmitotic tissues of the central nervous system, in the medulla of the
adrenal gland (ag), and the tongue. (F) In situ hybridisation with the 1.4-kb Nnat cDNA of a midsaggital section at E13.5 of a nontransgenic
mbryo. (G) Midsaggital head section of lacZ-stained embryos at E17.5 of line 2C-270A and line 2C-95B (H). (I) Endogenous expression of
nat in the follicular cells (f) surrounding the maturing oocytes in the adult ovary. (J) Expression of lacZ reporter in the follicular cells in

ine 2C-95B. Expression was also observed with line 2C-270A. (K) Nnat endogenous expression in the future islet cells of the pancreas (ip).
(L) Expression of lacZ reporter in the pancreas, line 2C-270A. (M) Endogenous expression in the primordial epithelium of the lung (le). (N)

Expression of lacZ reporter in the lung, line 2C-270A.
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395Imprinting of Neuronatin
of construct. We therefore went on to use the larger BAC
transgenes to generate further transgenic lines, in order to
identify additional enhancers and possibly the imprinting
element(s) for Nnat. A 95-kb BAC clone, 142N16 (Fig. 1A),
was modified to include a 59UTR loxP-AvrII sequence and a
reporter gene in the 39 UTR of Nnat (Fig. 4A). Three lines,
2C-95A, 2C-95B, and 2C-95C with one, four, and five copies
of the transgene, respectively, were generated (not shown).
With these larger clones, all the transgenic lines showed a
consistent expression pattern (Fig. 4B, 2C-95A). A compari-
son of saggital and transverse sections of lacZ-stained
embryos with matched in situ sections revealed that this
was a subset of the endogenous expression pattern (Figs.
3C–3F, data not shown). Expression of the transgene was
seen in Rathke’s pouch (Figs. 3D and 3E), the preocular
muscle mass, the facial component of the acoustic-facial
ganglion, the lamina terminalis (Fig. 3E), and the limbs (Fig.
3F) consistent with the endogenous expression pattern.
However, expression was absent in substantial areas, such
as the neural tube and the somites where the endogenous
Nnat gene is expressed.

All Nnat Enhancers Lie Upstream of the Gene

As 95 kb around the gene was not sufficient to drive full

FIG. 6. A maximal region of 80 kb is required for paternal-specific
2C-95B, 2C-95C, and 2C-270A after paternal (top row) or materna
expression of Nnat, the largest BAC clone, 137P16, span-

Copyright © 2001 by Academic Press. All right
ing 270 kb of the Nnat locus, was modified. Prior to
generating transgenic lines, we examined expression in a
transient transgenic assay at E11.5. One embryo with four
copies of the trangene was obtained. This showed expres-
sion consistent with the presence of all the Nnat enhancers
within BAC 137P16 (Fig. 5A). Widespread expression in the
forebrain and developing somites was seen in this embryo
which was absent in the embryos carrying the 95-kb trans-
gene (Fig. 5B). Subsequently, one seven-copy founder line,
2C-270A, was generated. At E11.5, embryos from this line
showed an identical expression pattern to the first integra-
tion event in the transient assay. We went on to examine
expression at other stages of development to confirm the
presence of all the enhancers within this transgene. At E8.5,
lacZ expression was seen in rhombomeres 3 and 5 and
Rathke’s pouch (Fig. 5C). Saggital sections of E13.5 embryos
from line 2C-95B revealed that lacZ expression was re-
stricted to Rathke’s pouch and hypothalamus (Fig. 5D).
Expression from the larger BAC, in line 2C-270A, was
widespread throughout all neural tissues (Fig. 5E). This
expression was comparable to expression from the endoge-
nous Nnat gene (Fig. 5F). Differences between 2C-270A and
2C-95B were most apparent at E17.5 (Figs. 5G and 5H).

In addition to tissues of neural origin, Nnat is also
expressed in the follicular cells surrounding the maturing

ession of Nnat. Whole-mount lacZ stain at E11.5 of lines 2C-95A,
tom row) transmission.
expr
oocytes (Fig. 5I). This expression was observed with both

s of reproduction in any form reserved.
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396 John et al.
the 2C-95 and the 2C-270 transgenes (Fig. 5J). Expression in
the future islet cells of the pancreas (Fig. 5K), the primordial
epithelium of the lung (Fig. 5M), the medulla of the adrenal
gland (Fig. 5F), and the retina, otic vesicle, and ear pinnae
(data not shown) was only seen with the 270-kb transgene
(Figs. 5L, 5N, and 5E).

These analyses clearly demonstrate that discrete up-
stream enhancers regulate tissue-specific expression of
Nnat. Furthermore, expression from the minitransgenes
and the modified BACs suggested that all the enhancers
regulating Nnat expression were situated upstream of the

nat promoter. We confirmed this by examining pregerm-
ine expression of a 30-kb NotI fragment obtained from the
C-95 construct. This fragment contained 25 kb of se-
uence upstream to the gene and extended to the NotI site
ithin the Bc10 promoter. An identical pattern of expres-

ion was observed for this transgene and the full-sized
C-95 transgene for two independent intergration events
data not shown).

Imprinting of Nnat at Ectopic Sites

Finally, we examined the imprinting capabilities of the
Nnat transgenic lines. The endogenous Nnat gene is only
ctive after paternal transmission and no expression is seen
fter maternal transmission. We therefore examined expres-
ion in all the transgenic lines after both paternal and
aternal transmission. The three transgenic lines with the
n-59 mini transgene lines showed expression of the trans-

ene after both paternal and maternal transmission (data
ot shown). Hence, this 13.6-kb fragment was not able to
espond to an imprinting signal. In contrast, three of the
AC transgenic lines (2C-95A, 2C-95B, and 2C-270A)
howed no expression of the transgene after maternal trans-
ission, similar to the endogenous locus (Fig. 6). All the

FIG. 7. Overview of the position of regulatory elements directing
AC integration sites were mapped outside regions cur- e

Copyright © 2001 by Academic Press. All right
ently defined as containing imprinted genes (2C-95A,
iddle chromosome 2; 2C-95B, proximal chromosome 14;

C-95C, distal third of chromosome 17; 2C-270A, centro-
eric chromosome 15). Therefore, the BAC transgenes
ere able to respond to imprinting signals independently of

heir site of integration. The cis-regulatory elements for
enerating allele-specific expression of Nnat must lie
ithin the minimal overlap between the two BAC clones, a

egion of 80 kb (Fig. 7).
One BAC transgenic line (2C-95C) showed expression

fter both maternal and paternal transmission. Variability
n the imprinting of much larger clones has been reported.
ne out of four lines for the 300-kb Igf2r YAC transgene did
ot imprint (Wutz et al., 1997). We also reported loss of
ilencing of high copy lines for the 120-kb Igf2/H19 YAC
ransgenes (Ainscough et al., 1997). Copy number also
ppears to be important in the imprinting of the H19 mini
ransgenes. In this case, only the multicopy lines imprint
Bartolomei et al., 1993; Brenton et al., 1999; Elson and
artolomei, 1997; Pfeifer et al., 1996). However, imprinting
f the Nnat BAC transgenic lines was independent of copy
umber. The seven-copy line, 2C-270A, was always effi-
iently silenced after maternal transmission. Also, we did
ot observe imprinting for either the single copy or the two
ulticopy Nn-59 mini transgene lines. Copy number does

ot appear to be a factor in the imprinting of Nnat. We are
nable to explain why this one BAC transgenic line did not
mprint. Although large insert transgenes may sometimes
ndergo rearrangement or deletion of small fragments of
NA, Southern blotting shows no evidence of this in our

ase. Given the size of these transgenes, it might suggest
hat the imprinting control regions (ICR) are generally more
usceptible to chromatin context than enhancers. It is
herefore interesting to note that the sequence of known
CRs is less well conserved across species compared with

ue-specific and allele-specific expression of the Nnat gene.
nhancers (John and Surani, 2000).
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397Imprinting of Neuronatin
DISCUSSION

How specific epigenetic states like imprinting originated
during evolution remains central to our understanding of
the mechanism of imprinting and its role in mammals.
Detailed examination of imprinted loci such as Nnat may
provide some understanding of this process. One mecha-
nism for generating novel epigenetic states is by retrotrans-
position. This has been observed with insertion of the
intracisternal A particles (IAP), as seen at the agouti and
fused loci (Morgan et al., 1999). Both of these loci exhibit
ariable penetrance and differential methylation that, at
east in part, is dependent on their parental origin. The
mprinting of the mouse U2af-rs1 gene on proximal chro-

mosome 11, which is thought to have occurred by retro-
transposition, appears to be of this type (Kitagawa et al.,
1995). U2af-rs1 shares some similarities with the imprint-
ing of Nnat, since U2af-rs1 is also a single imprinted gene
located within an intron of the biallelically transcribed,
antisense Murr1 gene. However, unlike Nnat, U2af-rs1 is
intronless, and possibly neomorphic in the mouse, since
none of the three human U2AF-RS1 homologues are im-
printed and none reside on chromosome 2 where the human
MURR1 gene is located (Nabetani et al., 1997). Nnat, in
contrast to U2af-rs1, does contain introns and the overall
rganisation of the Nnat locus relative to the other genes in
he region is conserved between mouse and humans. The
uman locus is also differentially methylated, indicating a
onservation of imprinting across species (our unpublished
ata). This suggests that imprinting of this locus is well
stablished amongst eutherians and also that it is not
mprinted as a result of a retrotransposition event.

Further insight into the mechanism of imprinting comes
rom comparisons between marsupials and eutherian mam-

als which diverged some 130 million years ago (John and
urani, 2000; Killian et al., 2000). The Igf2r gene imprinting
epends on an intronic, differentially methylated CpG
sland, and its paternal antisense transcript in mice (Wutz
t al., 1997). However, this island (and presumably the
ntisense transcript) is absent from the imprinted marsu-
ial IGF2R locus and therefore it is apparently not obliga-
ory for imprinting (Killian et al., 2000). Here, we have
emonstrated that Nnat is apparently an isolated imprinted
ene. We suggest that imprinting of single, isolated genes
ould be viewed as a prototypic state. If so, progression
owards the more familiar domains with multiple im-
rinted genes may have occurred in a stepwise fashion.
We have used a transgenic approach to identify the cis

lements regulating tissue-specific expression of Nnat and
those controlling allele-specific expression. The enhancers
for tissue-specific expression of Nnat gene are distinct and
dispersed. Some lie more than 25 kb upstream of the Nnat
promoter. In fact, it appears that all the enhancers lie
upstream of the gene (Fig. 7). This arrangement may be a
common feature of imprinted loci since enhancers for the
Igf2 gene (Kaffer et al., 2000) and for p57Kip2 (R.M.J., manu-

cript in preparation) are also located to one side of these

Copyright © 2001 by Academic Press. All right
enes. In the case of Igf2, all the enhancers apparently lie
ownstream of the gene and are functionally separated from
he Igf2 promoter by a boundary element active on the
aternal allele (Bell and Felsenfeld, 2000; Hark et al., 2000;

chmidt et al., 1999). However, there is no evidence for a
imilar boundary at the Nnat locus.
Both the 95-kb BAC transgene and the 270-kb transgene

an exhibit imprinting at ectopic sites (Fig. 6). Therefore,
ost of the significant imprinting elements for Nnat must

e within the minimal overlap between these transgenes,
n 80-kb region. Preliminary data for the 30-kb transgene
xcludes a role for the Bc10 transcript and sequences
ownstream of NNat in the imprinting of this gene. The
ifferential methylation of the Nnat parental alleles (DMR)
s confined close to the gene and does not extend to any
eighbouring regions or genes, such as Bc10. This argues for
localised effect of a putative ICR. The 13-kb transgene

mmediately proximate to the gene is not sufficient for
mprinting. However, it is the case that other small trans-
enes imprint poorly at ectopic sites, even those for H19
here there are known ICRs present (Bartolomei et al.,
993; Brenton et al., 1999; Elson and Bartolomei, 1997;
feifer et al., 1996). It seems that appropriate chromatin
ontext is essential for imprinting, a condition that is met
ith the larger BAC or YAC transgenes. This may reflect

he greater degree of susceptibility of ICRs to nearby cis-
equence as compared, for instance, with enhancer se-
uences. However, it may equally suggest that ICRs extend
ver larger regions than currently thought and that the
equence content of the region is important in establishing
n efficient imprint. For Nnat, the presence of an ICR in
lose proximity to the gene is supported by our preliminary
tudies which have shown the presence of allele-specific
NaseI hypersensitive sites closely linked to the Nnat

ene.
By virtue of its isolation from other imprinted genes, the
nat locus represents a simple but effectively imprinted
omain with conserved genomic organisation in mouse and
an.

ACKNOWLEDGMENTS

We thank Louis Lefebvre, Maithreyi Narasimha, Yuk-yee Szeto,
and John Rouse for useful discussions and comments on the
manuscript. We also thank Josephine Peters and Colin Beechey for
providing material from T2Wa disomic embryos. This work was
funded by the Wellcome Trust Grant 036481. K.L.A. is supported
by an Elmore Research Studentship at Caius College, Cambridge,
U.K.

REFERENCES

Ainscough, J. F.-X., Koide, T., Tada, M., Barton, S., and Surani,
M. A. (1997). Imprinting of Igf2 and H19 from a 130kb YAC

transgene. Development 124, 3621–3632.

s of reproduction in any form reserved.



B

B

B

B

B

B

B

C

C

D

D

E

G

G

H

H

H

J

J

J

K

K

K

K

K

K

L

L

L

L

L

L

398 John et al.
Bartolomei, M. S., Webber, A. L., Bruknow, M. E., and Tilghman,
S. M. (1993). Epigenetic mechanisms underlying the imprinting
of the mouse H19 gene. Genes Dev. 7, 1663–1673.

arton, S. C., Norris, M. L., and Surani, M. A. (1987). “Nuclear
Transplantation in Fertilised and Parthenogenetically Activated
Eggs.” IRL Press, Oxford.

eechey, C. V., and Cattanach, B. M. (1996). Genetic imprinting
map. Mouse Genome 94, 96–99.

ell, A. C., and Felsenfeld, G. (2000). Methylation of a CTCF-
dependent boundary controls imprinted expression of the Igf2
gene [see comments]. Nature 405, 482–485.

ickmore, W. A., and Bird, A. P. (1992). Use of restriction endo-
nucleases to detect and isolate genes from mammalian DNA.
Methods Enzymol. 216, 224–244.

randeis, M., Kafri, T., Ariel, M., Chaillet, J. R., McCarrey, J.,
Razin, A., and Cedar, H. (1993). The ontogeny of allele-specific
methylation associated with imprinted genes in the mouse.
EMBO J. 12, 3669–3677.

renton, J. D., Drewell, R. A., Viville, S., Hilton, K. J., Barton, S. C.,
Ainscough, J. F., and Surani, M. A. (1999). A silencer element
identified in Drosophila is required for imprinting of H19 re-
porter transgenes in mice. Proc. Natl. Acad. Sci. USA 96,
9242–9247.

uiting, K., Saitoh, S., Gross, S., Dittrich, B., Schwartz, S., Nicholls,
R. D., and Horsthemke, B. (1995). Inherited microdeletions in the
Angelman and Prader–Willi syndromes define an imprinting
centre on human chromosome 15. Nat. Genet. 9, 395–400.
attanach, B. M., and Jones, J. (1994). Genetic imprinting in the
mouse: Implications for gene regulation. J. Inherited Metab. Dis.
17, 403–420.
attanach, B. M., and Kirk, M. (1985). Differential activity of
maternally and paternally derived chromosome regions in mice.
Nature 315, 496–498.
eChiara, T. M., Robertson, E. J., and Efstratiadis, A. (1991).
Parental imprinting of the mouse insulin-like growth factor II
gene. Cell 64, 849–859.
ou, D., and Joseph, R. (1996). Cloning of human neuronatin gene
and its localization to chromosome-20q 11.2–12: The deduced
protein is a novel “proteolipid.” Brain Res. 723, 8–22.

lson, D. A., and Bartolomei, M. S. (1997). A 59 differentially
methylated sequence and the 39-flanking region are necessary for
H19 transgene imprinting. Mol. Cell. Biol. 17, 309–317.
romova, I., Gromov, P., and Celis, J. E. (1999). Identification of
true differentially expressed mRNAs in a pair of human bladder
transitional cell carcinomas using an improved differential dis-
play procedure. Electrophoresis 20, 241–248.
uillemot, F., Nagy, A., Auerbach, A., Rossant, J., and Joyner, A. L.
(1994). Essential role of Mash-2 in extraembryonic development.
Nature 371, 333–336.
ark, A. T., Schoenherr, C. J., Katz, D. J., Ingram, R. S., Levorse,
J. M., and Tilghman, S. M. (2000). CTCF mediates methylation-
sensitive enhancer-blocking activity at the H19/Igf2 locus [see
comments]. Nature 405, 486–489.
ogan, B., Beddington, R., Constantini., F., and Lacy, E. (1994).
“Manipualting the Mouse Embryo: A Laboratory Manual.” Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
oovers, J. M. N., Kalikin, L. M., Johnson, L. A., Alders, M.,
Redeker, B., Law, D. J., Bliek, J., Steenman, M., Benedict, M.,
Wiegant, J., Lengauer, C., Taillon-Miller, P., Schlessinger, D.,
Edwards, M. C., Elledge, S. J., Ivans, A., Westerveld, A., Little, P.,
Mannens, M., and Feinberg, A. P. (1995). Multiple genetic loci

within 11p15 defined by Beckwith–Weidemann syndrome rear-

Copyright © 2001 by Academic Press. All right
rangement breakpoints and subchromosomal transferable frag-
ments. Proc. Natl. Acad. Sci. USA 92, 12456–12460.

ohn, R. M., Robbins, C. A., and Myers, R. M. (1994). Identification
of genes within CpG-enriched DNA from human chromosome
4p16.3. Hum. Mol. Genet. 3, 1611–1616.

ohn, R. M., and Surani, M. A. (2000). Genomic imprinting,
mammalian evolution, and the mystery of egg-laying mammals.
Cell 101, 585–588.

oseph, R., Dou, D., and Tsang, W. (1994). Molecular cloning of a
novel mRNA (neuronatin) that is highly expressed in neonatal
mammalian brain. Biochem. Biophys. Res. Commun. 201, 1227–
1234.
affer, C. R., Srivastava, M., Park, K. Y., Ives, E., Hsieh, S., Batlle,
J., Grinberg, A., Huang, S. P., and Pfeifer, K. (2000). A transcrip-
tional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14,
1908–1919.
agitani, F., Kuroiwa, Y., Wakana, S., Shiroishi, T., Miyoshi, N.,
Kobayashi, S., Nishida, M., Kohda, T., Kaneko-Ishino, T., and
Ishino, F. (1997). Peg5/Neuronatin is an imprinted gene located
on sub-distal chromosome 2 in the mouse. Nucleic Acids Res.
25, 3428–3432.
elsey, G., Bodle, D., Miller, H. J., Beechey, C. V., Coombes, C.,
Peters, J., and Williamson, C. M. (1999). Identification of im-
printed loci by methylation-sensitive representational difference
analysis: Application to mouse distal chromosome 2. Genomics
62, 129–138.
ikyo, N., Williamson, C. M., John, R. M., Barton, S. C., Beechey,
C. V., Ball, S. T., Cattanach, B. M., Surani, M. A., and Peters, J.
(1997). Genetic and functional analysis of neuronatin in mice
with maternal or paternal duplication of distal chromosome 2.
Dev. Biol. 190, 66–77.
illian, J. K., Byrd, J. C., Jirtle, J. V., Munday, B. L., Stoskopf, M. K.,
MacDonald, R. G., and Jirtle, R. L. (2000). M6P/IGF2R imprinting
evolution in mammals. Mol. Cell 5, 707–716.
itagawa, K., Wang, X., Hatada, I., Yamaoka, T., Nojima, H.,
Inazawa, J., Abe, T., Mitsuya, K., Oshimura, M., Murata, A., et al.
(1995). Isolation and mapping of human homologues of an
imprinted mouse gene U2af1-rs1. Genomics 30, 257–263.

ee, J. T. (2000). Disruption of imprinted X inactivation by parent-
of-origin effects at Tsix. Cell 103, 17–27.

ee, M. P., DeBaun, M. R., Mitsuya, K., Galonek, H. L., Branden-
burg, S., Oshimura, M., and Feinberg, A. P. (1999). Loss of
imprinting of a paternally expressed transcript, with antisense
orientation to KVLQT1, occurs frequently in Beckwith–
Wiedemann syndrome and is independent of insulin-like growth
factor II imprinting. Proc. Natl. Acad. Sci. USA 96, 5203–5208.

efebvre, L., Viville, S., Barton, S. C., Ishino, F., Keverne, E. B., and
Surani, M. A. (1998). Abnormal maternal behaviour and growth
retardation associated with loss of the imprinted gene Mest [see
comments]. Nat. Genet. 20, 163–169.

eighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A.,
and Tilghman, S. M. (1995). Disruption of imprinting caused by
deletion of the H19 gene region in mice. Nature 375, 34–39.

i, L., Keverne, E. B., Aparicio, S. A., Ishino, F., Barton, S. C., and
Surani, M. A. (1999). Regulation of maternal behavior and
offspring growth by paternally expressed Peg3. Science 284,
330–333.

i, X., Wang, W., and Lufkin, T. (1997). Dicistronic LacZ and
alkaline phosphatase reporter constructs permit simultaneous
histological analysis of expression from multiple transgenes.

BioTechniques 23, 874–878, 880, 882.

s of reproduction in any form reserved.



M

N

O

P

399Imprinting of Neuronatin
Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E.
(1999). Epigenetic inheritance at the agouti locus in the mouse.
Nat. Genet. 23, 314–318.
ountford, P., Zevnik, B., Duwel, A., Nichols, J., Li, M., Dani, C.,
Robertson, M., Chambers, I., and Smith, A. (1994). Dicistronic
targeting constructs: reporters and modifiers of mammalian gene
expression. Proc. Natl. Acad. Sci. USA 91, 4303–4307.
abetani, A., Hatada, I., Morisaki, H., Oshimura, M., and Mukai,
T. (1997). Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol.
Cell. Biol. 17, 789–798.
nyango, P., Miller, W., Lehoczky, J., Leung, C. T., Birren, B.,
Wheelan, S., Dewar, K., and Feinberg, A. P. (2000). Sequence and
comparative analysis of the mouse 1-megabase region ortholo-
gous to the human 11p15 imprinted domain [In Process Cita-
tion]. Genome Res. 10, 1697–1710.

eters, J., Wroe, S. F., Wells, C. A., Miller, H. J., Bodle, D., Beechey,
C. V., Williamson, C. M., and Kelsey, G. (1999). A cluster of
oppositely imprinted transcripts at the Gnas locus in the distal
imprinting region of mouse chromosome 2. Proc. Natl. Acad. Sci.
USA 96, 3830–3835.

Pfeifer, K., Leighton, P. A., and Tilghman, S. M. (1996). The
structural H19 gene is required for transgene imprinting. Proc.
Natl. Acad. Sci. USA 93, 13876–13883.

Razin, A., and Cedar, H. (1994). DNA methylation and genomic
imprinting. Cell 77, 473–476.

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). “Molecular
Cloning: A Laboratory Manual.” Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, NY.

Schmidt, J. V., Levorse, J. M., and Tilghman, S. M. (1999). Enhancer
competition between H19 and Igf2 does not mediate their
imprinting. Proc. Natl. Acad. Sci. USA 96, 9733–9738.

Shemer, R., Birger, Y., Riggs, A. D., and Razin, A. (1997). Structure
of the imprinted mouse Snron gene and establishment of its
parental-specific meltrylartion pattern. Proc. Natl. Acad. Sci.
USA 94, 10267–10272.
Smilinich, N. J., Day, C. D., Fitzpatrick, G. V., Caldwell, G. M.,
Lossie, A. C., Cooper, P. R., Smallwood, A. C., Joyce, J. A.,

Copyright © 2001 by Academic Press. All right
Schofield, P. N., Reik, W., Nicholls, R. D., Weksberg, R.,
Driscoll, D. J., Maher, E. R., Shows, T. B., and Higgins, M. J.
(1999). A maternally methylated CpG island in KvLQT1 is
associated with an antisense paternal transcript and loss of
imprinting in Beckwith–Wiedemann syndrome. Proc. Natl.
Acad. Sci. USA 96, 8064–8069.

Surani, M. A. (1998). Imprinting and the initiation of gene silencing
in the germ line. Cell 93, 309–312.

Wijnholds, J., Chowdhury, K., Wehr, R., and Gruss, P. (1995).
Segment-specific expression of the neuronatin gene during early
hindbrain development. Dev. Biol. 171, 73–84.

Williamson, C. M., Beechey, C. V., Ball, S. T., Dutton, E. R.,
Cattanach, B. M., Tease, C., Ishino, F., and Peters, J. (1998).
Localisation of the imprinted gene neuronatin, Nnat, confirms
and refines the location of a second imprinting region on mouse
chromosome 2. Cytogenet. Cell Genet. 81, 73–78.

Wutz, A., Smrzka, O. W., Schweifer, N., Schellander, K., Wagner,
E. F., and Barlow, D. P. (1997). Imprinted expression of the Igf2r
gene depends on an intronic CpG island. Nature 389, 745–749.

Yan, Y., Frisen, J., Lee, M. H., Massague, J., and Barbacid, M. (1997).
Ablation of the CDK inhibitor p57Kip2 results in increased
apoptosis and delayed differentiation during mouse develop-
ment. Genes Dev. 11, 973–983.

Yang, X. W., Model, P., and Heintz, N. (1997). Homologous
recombination based modification in Escherichia coli and germ-
line transmission in transgenic mice of a bacterial artificial
chromosome [see comments]. Nat. Biotechnol. 15, 859–865.

Zhang, P., Liegeois, N. J., Wong, C., Finegold, M., Hou, H.,
Thompson, J. C., Silverman, A., Harper, J. W., DePinho, R. A.,
and Elledge, S. J. (1997). Altered cell differentiation and prolif-
eration in mice lacking p57KIP2 indicates a role in Beckwith-
Wiedemann syndrome. Nature 387, 151–158.

Received for publication February 1, 2001
Revised April 5, 2001
Accepted April 5, 2001
Published online July 10, 2001

s of reproduction in any form reserved.


	INTRODUCTION
	FIG. 1
	FIG. 2

	MATERIALS AND METHODS
	FIG. 3
	FIG. 4

	RESULTS
	FIG. 5
	FIG. 6
	FIG. 7

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

