macrophages¹⁷. Analysis of the immune responses of mg^{3J} animals, which lack attractin, will no doubt help to elucidate its function. Is there any role for α MSH in the immune system and might attractin be involved in that? Certainly aMSH has anti-inflammatory activity in animals. At least two cell types involved in inflammation express MC1R: neutrophils, whose chemotaxis to sites

of inflammation might be inhibited by aMSH; and macrophages, which are inhibited by aMSH from releasing nitric oxide, a mediator of inflammation^{20,21}. These processes are rather different from those described that involve attractin *in vitro*, but it will nevertheless be useful to investigate the inflammatory response of mahogany mice.

References

- 1 Krude, H. et al. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157
- 2 Robbins L S. et al. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter receptor function. *Cell* 72, 827–834 Valverde, P. *et al.* (1995) Variants of the melanocyte
- stimulating hormone-receptor gene are associated with red hair and fair skin in humans Nat Genet 11 328-330
- Smith, R. *et al.* (1998) Melanocortin 1 receptor variants in an Irish population J. Invest. Dermatol. 111, 119–122
- 5 Huszar, D. et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131-141
- Vaisse, C. et al. (1998) A frameshift mutation in human MC4R 6 is associated with a dominant form of obesity. Nat. Genet. 20, 113-114
- 7 Yeo, G.S.H. et al. (1998) A frameshift mutation in MC4R associated with dominantly inherited obesity. Nat. Genet. 20, 111-112
- Bultman, S.P. et al. (1992) Molecular characterisation of the

mouse agouti locus. Cell 71, 1–20

- 9 Ollmann M.M. et al. (1998) Interaction of agouti protein with the melanocortin 1 receptor in vitro and in vivo. Genes Dev. 12 316-330
- Duhl D M *et al.* (1994) Neomorphic agouti mutations in obese 10 yellow mice. Nat. Genet. 8, 59-65
- 11 Ollmann, M.M. et al. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135-138
- 12 Shutter, J.R. *et al.* (1997) Hypothalamic expression of *ART*, a novel gene related to agouti is up-regulated in obese and diabetic mutant mice. *Genes Dev.* 11, 593–602 Miller, K.A. *et al.* (1997) Genetic studies of the mouse
- 13 mutations mahogany and mahoganoid. Genetics 146, 1407-1415
- Dinulescu, D.M. et al. (1998) Mahogany (mg) stimulates 14 feeding and increases basal metabolic rate independent of its suppression of agouti. Proc. Natl. Acad. Sci. U. S. A. 95, 12707-12712
- 15 Nagle, D.L. et al. (1999) The mahogany protein is a receptor involved in suppression of obesity. Nature 398, 148-152 16
 - Gunn, T.M. *et al.* (1999) The mouse mahogany locus encodes a

transmembrane form of human attractin. *Nature* 398, 152-156

- 17 Duke-Cohan, J.S. et al. (1998) Attractin (DPPT-L), a member of the CUB family of cell adhesion and guidance proteins, is secreted by activated human T lymphocytes and modulates immune cell interactions. Proc. Natl. Acad. Sci. U. S. A. 95, 11336-11341
- Duke-Cohan, J.S. et al. (1995) A novel form of 18 dipeptidylpeptidase IV found in human serum. J. Biol. Chem. 270 14107-14114
- Proost, P. et al. (1999) Truncation of macrophage-derived chemokine by CD26/dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J. Biol. Chem. 274, 3988-3993
- 20 Catania, A. *et al.* (1996) The neuropeptide α MSH has specific recptors on neutrophils and reduces chemotaxis in vitro. Peptides 17, 675-679
- Star, R.A. et al. (1995) Evidence of autocrine modulation of macrophage nitric-oxide synthase by alpha-melanocytestimulating hormone Proc Natl Acad Sci II S A 92 8016-8020

Genomic imprinting in mammals an interplay between chromatin and DNA methylation?

Most imprinted loci have key regulatory elements that are methylated on only one of the parental chromosomes. For several of these 'differentially methylated regions', recent studies establish that the unmethylated chromosome has a specialized chromatin organization that is characterized by nuclease hypersensitivity. The novel data raise the question of whether specific proteins and associated chromatin features regulate the allele-specificity of DNA methylation at these imprinting control elements.

n mammals, the maternal and paternal genomes are both required for normal embryonic and postnatal development. Their functional non-equivalence is mediated by genomic imprinting, an epigenetic mechanism by which the expression of certain genes becomes dependent on their parental origin¹. To date, some 30 imprinted genes have been identified in humans and mice. Many of these play key roles in growth and differentiation, and imprinting is now recognized to be an important factor in several inherited diseases and carcinogenesis in humans^{2,3}. Although the precise mechanisms that allow cells to distinguish the parental chromosomes at imprinted loci are poorly understood, one epigenetic feature that is consistently associated with imprinting is CpG methylation⁴. Almost all imprinted genes have sequence elements that are methylated only on one of the two parental alleles.

These are usually referred to as 'differentially methylated regions' (DMRs). Experiments involving the targeted deletion of the main mouse methyltransferase gene (Dnmt1), which led to loss of imprinting in mice that were deficient in cytosine methylation^{5,6}, imply that this methylation mark is essential for the maintenance of imprinting.

Differentially methylated regions

More recently, homologous-recombination experiments in the mouse have demonstrated that individual DMRs are, indeed, important for the expression of imprinted genes. For example, a DMR located upstream of the mouse H19 gene⁷ that is methylated on the paternal chromosome (Fig. 1) was shown to be essential for the imprinted expression both of H19 and of the neighbouring, paternally expressed gene that encodes insulin-like growth

Robert Feil robert.feil@bbsrc.ac.uk

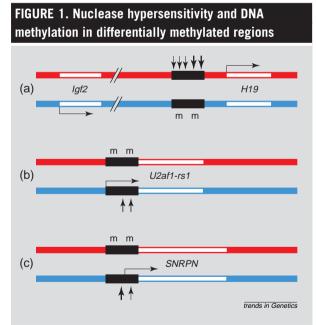
Sanieev Khosla sanjeev.khosla@ bbsrc.ac.uk

Programme in **Developmental Genetics**, The Babraham Institute. Cambridge, UK CB2 4AT.

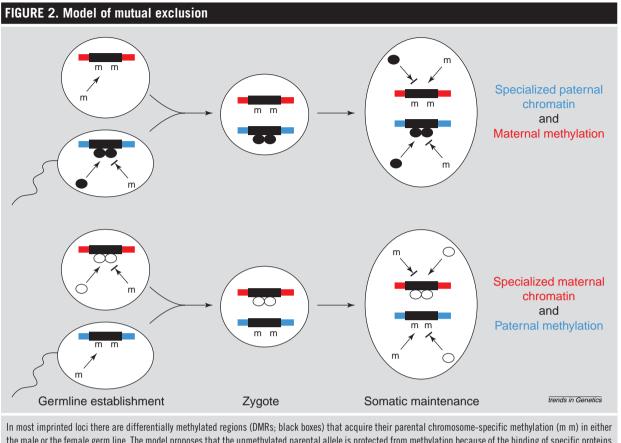
factor-2 (Igf2)8. In particular, the deletion of this DMR on the maternal chromosome led to de-repression of the maternal Igf2 gene. Based on this finding and on transgenic experiments, it has been proposed that, on the unmethylated maternal chromosome, the H19 upstream DMR acts as a chromatin boundary that insulates Igf2 from its enhancer sequences^{3,8}. Another well-characterized imprinted mouse gene, the Igf2-receptor gene (Igf2r) on chromosome 17, is also expressed from the maternal chromosome and has an intronic DMR that is methylated exclusively on the maternal chromosome9. Deletion of this DMR (also referred to as 'region 2') from a yeast artificial chromosome- (YAC-)based transgene construct demonstrates that this element is essential for Igf2r imprinting, apparently by regulating the expression of antisense transcripts from the paternal chromosome¹⁰. Its allelic methylation, and that of the H19 DMR, originates from the germ line and appears to be maintained throughout development⁹. DMRs at other imprinted mouse genes have also been shown to be established from the germ line and maintained somatically. These include the DMR in the U2af1-rs1 gene¹¹ on mouse chromosome 11, and the DMR in the promoter and exon-1 of the paternally expressed Snrpn gene¹², both of which code for an RNAsplicing factor. A targeted deletion that comprised the DMR in the 5'-region of Snrpn led to the deregulation of paternally expressed genes in the entire Snrpn imprinted domain, probably by interfering with the establishment of imprints in the male germ line¹³. In humans, SNRPN (and neighbouring genes in the imprinted domain) maps to the region of the Prader-Willi and Angelman syndromes (two distinct neurodevelopmental disorders) on chromosome 15q11-q13, and is expressed only from the paternal chromosome. The finding that the 5'-region DMR is deleted in Prader-Willi syndrome patients, and that this is associated with deregulation of imprinting in the entire imprinted domain, confirms the functional importance of these 'imprinting control' sequences¹⁴.

Together, the genetic studies highlight the importance of DMRs in regulating the expression of imprinted genes. In addition, the recent methylation studies have shown that the allelic-methylation patterns of these and some other DMRs derive from the germ line and appear to be maintained throughout development¹⁻³. Apart from the key issue of how these methylation marks become established in either the egg or in sperm¹, these data raise the question of how allelic-methylation patterns are maintained somatically. Equally important is what prevents the unmethylated allele from becoming methylated in the germ line, and what mechanism(s) protect it from *de novo* methylation throughout development. Although definitive answers to these questions await elucidation, new insights have emerged from studies that demonstrate parental chromosome-specific organization of chromatin at DMRs. This article discusses these novel data, and proposes that specific protein factors are involved in the germ line establishment and the somatic maintenance of the allelic methylation at DMRs that might also play a role in their establishment in the germ line as well.

Interplay between chromatin and DNA methylation


In three *in vivo* chromatin studies¹⁵⁻¹⁷, nuclease-hypersensitive sites were detected in the DMR upstream of the mouse *H19* gene. Five DNase-I-hypersensitive sites (and

TIG November 1999, volume 15, No. 11


432

hypersensitivity to different restriction endonucleases) were detected on the unmethylated maternal chromosome, but not on the methylated paternal chromosome (Fig. 1). These hypersensitive sites were apparent in all embryonic and adult material analyzed, and also in tissues that do not express the H19 (and the neighbouring Igf2) gene. A typical DNase-I-hypersensitive site corresponds to a region where nucleosomes are absent or partially disrupted. This lack of canonical nucleosomes is due to the binding of non-histone proteins. Usually, a variety of different proteins are bound, some of which are responsible for the observed hypersensitivity¹⁸. A specialized chromatin organization seems to be present at the H19 DMR as well. Micrococcal-nuclease-digestion assays revealed a distinct, non-nucleosomal organization of chromatin on the maternal chromosome, precisely in the region of DNase-I hypersensitivity¹⁷. These results suggest that non-histone proteins are associated with the maternal copy of the DMR and that they are involved in its chromatinboundary function. The finding that this element acts as a silencer when introduced into Drosophila (which has no CpG methylation) also contributes evidence for the alternative chromatin organization and the association of non-histone proteins¹⁹.

A similar allelic configuration of chromatin has been detected at the DMR in the imprinted mouse U2af1-rs1 gene. The DMR of this paternally expressed gene has two prominent DNase-I-hypersensitive sites on the unmethylated paternal chromosome^{20,21}, but is rather inaccessible to nucleases on the methylated maternal chromosome²¹. Thus, both in the *H19* and in the *U2af1*-rs1 DMRs, a specialized organization of chromatin, characterized by DNase-I hypersensitivity, is present only on the unmethylated chromosome. This seems to indicate that DNase-I

In the differentially methylated regions (DMRs) shown (black boxes), allelic methylation originates from the germ line and appears to be maintained throughout development. (a) The *H19* upstream DMR (mouse), (b) the *U2af1-rs1* DMR (mouse) and (c) the *SNRPN* 5'-region DMR (human). Paternal chromosomes are in blue; maternal chromosomes in red. DNase I-hypersensitive sites are depicted as vertical arrows, methylation as 'm m', and genes as open boxes (horizontal arrows indicate transcription).

the male or the female germ line. The model proposes that the unmethylated parental allele is protected from methylation because of the binding of specific proteins (filled or open ovals) causing the formation of specialized chromatin organization. Protein factors are not necessarily identical for different DMRs, also not for DMRs that are unmethylated on the same parental genome. Conversely, methylation at the methylated parental allele and associated chromatin features^{21,24} prevent the binding of such factors. These two competing mechanisms are involved in the maintenance of the maternal and paternal epigenotypes during development, and could be involved in their establishment in the germ lines as well (see text).

hypersensitivity and DNA methylation represent alternative epigenotypes that are mutually exclusive. The finding that alterations in the one affect the other indicates that the two epigenotypes are, indeed, somehow interdependent. Hence, in the *H19* DMR, the loss of hypersensitivity might occur when embryonic stem cells (ES) are cultured *in vitro*, and is associated with a gain of methylation¹⁷. Conversely, in the *U2af1-rs1* DMR, the loss of DNA methylation is consistently associated with a gain of hypersensitivity²¹.

For DMRs in the human SNRPN locus, recent data provide evidence for the alternative organization of chromatin at the unmethylated allele, which is characterized by nuclease hypersensitivity22. Analysis of DNase-I (and restriction-endonuclease) sensitivity throughout the SNRPN transcription unit revealed several sites of parental chromosome-specific hypersensitivity²². The most prominent of these colocalizes with the DMR that is located in the 5'-portion of SNRPN. In this 'imprintingcontrol centre', two strong DNase-I sites are present on the unmethylated paternal chromosome, but not on the methylated maternal chromosome (Fig. 1). The recent finding²³ that the SNRPN DMR (and similarly the H19 DMR) functions as a classical silencer in transgenic Drosophila also suggests that this element has specialized chromatin features and possibly interacts with nonhistone proteins.

Based on the new chromatin data, we propose that, during gametogenesis, the decision is made between

methylation of the DNA or the establishment of a chromatin organization that is characterized by nuclease hypersensitivity. Non-histone factors that promote a specialized chromatin organization might be available in only one of the two germ lines, and once such an organization is achieved, this would protect the regulatory element from DNA methylation in the germ line and during development. Conversely, if such specific non-histone proteins are absent in the germ line (and factors to methylate the DMR are available), the sequence element becomes methylated. After fertilization, this DNA methylation and its associated chromatin features²⁴ would not allow the binding of non-histone proteins or the formation of a non-canonical chromatin organization. The essential component of the proposed model is that, in somatic cells, specific proteins are associated with the unmethylated allele of DMRs and prevent the DNA from becoming methylated. Some of these specific factors associated with DMRs are also present in only one of the two germ lines and would thus specify the parental allele that remains unmethylated. The validity of this model of mutual exclusion (Fig. 2) requires further testing in somatic and germ cells.

Perspectives

It is notable that, similar to the differential DNA methylation, the parental chromosome-specific nuclease hypersensitivity in the *H19*, *U2af1-rs1* and *SNRPN* genes is present in all tissues analysed. This suggests that at least some of the associated factors are constitutive and could be involved in preventing the DMR from becoming methylated during development. Such a role would be most pertinent during pre-gastrulation stages, when the global wave of *de novo* methylation occurs⁶. Significantly, for the *H19* and *U2af1-rs1* DMRs, it has been established that their allelic hypersensitivity is also present in ES cells^{17,21}, which are approximately equivalent to the inner cell mass of a blastocyst.

From the current data it is unclear whether cytosine methylation and non-histone protein binding are mutually exclusive in the male and female germ line, and whether this confers the allele-specificity of DNA methylation at DMRs. However, several studies indicate that there could be specific proteins in developing germ cells that mediate the methylation status of DMRs. Birger et al.25 have shown recently that the intronic DMR of the mouse Igf2rgene contains a sequence element that, after its injection into the female pronucleus of fertilized eggs, becomes methylated during pre-implantation development. By contrast, the same element injected into the male pronucleus remains protected from methylation, at least until the blastocyst stage. Based also on their in vitro band-shift assays, the authors suggest that there is an allele-discriminating protein that is associated specifically with the unmethylated paternal chromosome at this DMR (Ref. 25). In another study, on the imprinted mouse U2af1-rs1 gene, Hatada and co-workers reported that methylation at the endogenous U2af1-rs1 locus can be affected by the presence of multiple copies of its own transgene in the testis²⁶. Frequently, offspring (even those that were non-transgenic) of hemizygous transgenic males acquired full methylation on the (normally unmethylated) paternal copy of the U2af1-rs1 gene, in addition to the methylation on the maternal copy. An explanation for this intriguing finding could be that there are specific factor(s) in the male germ line that associate with the U2af1-rs1 gene and keep it unmethylated²⁶. Competing, additional transgene copies of their recognition elements (perhaps the paternal hypersensitive sites) would interfere with the binding of these protein(s) to the endogenous gene.

The challenge now is to determine which non-histone protein factors are associated with DMRs. As of yet, there are no indications about their possible nature. However, although non-homologous, the three DMRs in which allelic nuclease hypersensitivity has been identified are all rather G+C-rich. Apart from their allelic methylation, they would, in fact, resemble CpG islands: CpG-rich sequences that are usually associated with the 5' domains of housekeeping genes and certain tissue-specific genes. It has been shown that CpG islands have an alternative chromatin structure, with nucleosome-free regions, and various *in vivo* studies demonstrate their association with proteins²⁷. Because CpG islands are normally maintained in

an unmethylated state, it has been proposed that specific proteins are involved in protecting CpG island sequences from de novo methylation during development²⁷. A number of studies indicate that members of the SP1 family^{28,29}, and other proteins, including NF-KB (Refs 30, 31), could fulfil such protective roles. How their precise actions come about, and whether these factors can specify sites of (passive or active) demethylation at specific developmental stages³⁰⁻³², remains to be resolved. Given the similarities between CpG islands and DMRs, it should be interesting to determine whether functionally related proteins are involved in the regulation of parental allele-specific DNA methylation. The fact that the DMRs discussed do not share significant sequence homology suggests that different proteins are involved; these could, however, be structurally similar and part of a family.

The novel chromatin studies do not address an other important question, that of what protects the methylated parental allele against demethylation. The DMRs discussed here retain their allele-specific DNA methylation during the genome-wide wave of demethylation that occurs during pre-implantation development⁶, and thereafter, and this suggests the involvement of one or more protective mechanisms. The model of mutual exclusion does not preclude the involvement of specific factors and chromatin modifications also on the methylated parental chromosome. In fact, dependent on its density, CpG methylation might be providing an alternative type of chromatin at the methylated chromosome24,33. In this regard, one possibility would be the association of specific 'methylated-DNA-binding proteins' (MeCPs) to methylated cytosine residues. Recent studies have shown that a member of this family, MeCP2, recruits a multi-protein complex that includes histone deacetylases^{33,34}. This deacetylase activity can decrease local levels of core histone acetylation and, presumably, thereby alter chromatin conformation²⁴. Relative to the scenarios of chromatin modification associated with CpG methylation, it is interesting to note that, on the methylated chromosome, the entire mouse U2af1-rs1 locus was shown to be highly resistant to DNase-I and restriction endonucleases, which suggests a compacted chromatin conformation²¹. Future research will tell whether the conformational features of chromatin at imprinted loci are associated with histone modifications and protein binding specifically at the methylated allele.

Acknowledgements

We thank W. Reik and G. Kelsey for helpful comments and discussion. Supported by grants from the Human Frontier Science Program, the Ministry of Agriculture, Fisheries and Food (to R. Feil and W. Reik), and the Babraham Institute (R. Feil is a Babraham Research Fellow).

References

- 1 Surani, M.A. (1998) Imprinting and the initiation of gene silencing in the germ line. *Cell* 93, 309–312
- 2 Reik, W. and Walter, J. (1998) Imprinting mechanisms in
- mammals. *Curr. Opin. Genet. Dev.* 8, 154–164 3 Tilghman, S.M. (1999) The sins of the fathers and mothers:
- genomic imprinting in mammalian development. *Cell* 96, 185–193
- 4 Razin, A. and Cedar, H. (1994) DNA methylation and genomic imprinting. *Cell* 77, 473–476
- 5 Li, E. et al. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365

434

- mothers:
 4322–4329

 Cell 96,
 8

 Thorvaldsen, J.L. et al. (1998) Deletion of the H19
 - differentially methylated domain results in loss of imprinted expression of *H19* and *lgf2. Genes Dev.* 12, 3693–3702
 Stöger, R. (1993) Maternal-specific methylation of the

6 Jaenisch, R. (1997) DNA methylation and imprinting: why

imprinted mouse H19 gene exhibits exclusive paternal

methylation throughout development. Mol. Cell. Biol. 17,

Tremblay, K.D. et al. (1997) A 5' 2-kilobase-region of the

bother? Trends Genet, 13, 323-329

- imprinted mouse *lgf2r* locus identifies the expressed locus as carrying the imprinting signal. *Cell* 73, 61–71
- 10 Wutz, A. et al. (1997) Imprinted expression of the lgf2r gene depends on an intronic CpG island. Nature 389, 745–749
- 11 Shibata, H. et al. (1997). On oocyte-specific methylation imprint center in the mouse U2afbp-rs/U2af1-rs1 gene marks the establishment of allele-specific methylation during proving lattice duration and compared for a second and a second proving lattice duration and a second a s
- preimplantation development. Genomics 44, 171–178
 Shemer, R. et al. (1997) Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl. Acad. Sci. U. S. A. 94, 10267–10272
- 13 Yang, T. *et al.* (1998) A mouse model for Prader–Willi syndrome imprinting-centre mutations. *Nat. Genet.* 19, 25–31

TIG November 1999, volume 15, No. 11

- 14 Nicholls, R.D. et al. (1998) Imprinting in Prader–Willi and Angelman syndromes. Trends Genet. 14, 194–199
- **15** Hark, A.T. and Tilghman, S.M. (1998) Chromatin conformation
- of the *H19* epigenetic mark. *Hum. Mol. Genet.* 7, 1979–1985 Szabó, P.E. *et al.* (1998) Characterization of novel parentspecific epigenetic modifications upstream of the imprinted mouse *H19* gene. *Mol. Cell. Biol.* 18, 6767–6776
- 17 Khosla, S. *et al.* (1999) Parental allele-specific chromatin configuration in a boundary/imprinting-control element upstream of the mouse *H19* gene. *Mol. Cell. Biol.* 19, 2556–2566
- 18 Boyes, J. and Felsenfeld, G. (1996) Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site *FMRO* / 15 2496-2507
- of a hypersensitive site. *EMBO J.* 15, 2496–2507 **19** Lyko, F. *et al.* (1997) An imprinting element from the mouse *H19* locus functions as a silencer in *Drosophila. Nat. Genet.* 16 171–173
- 20 Shibata, H. *et al.* (1996) Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af-rs1 on mouse chromosome 11. *Genomics* 35, 248–252

- 21 Feil, R. *et al.* (1997) Parental chromosome-specific chromatin conformation in the imprinted *U2af1-rs1* gene in the mouse. *J. Biol. Chem.* 272, 20893–20900
- 22 Schweizer, J. et al. (1999) In vivo nuclease hypersensitivity studies reveal multiple sites of parental-origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. Hum. Mol. Genet. 8, 555–566
- 23 Lyko, F. et al. (1998) Identification of a silencing element in the human 15q11–q13 imprinting center by using transgenic Drosophila. Proc. Natl. Acad. Sci. U. S. A. 95, 1698–1702
- 24 Ng, H-H. and Bird, A. (1999) DNA methylation and chromatin modification. *Curr. Opin. Genet. Dev.* 8, 158–163
- 25 Birger, Y. et al. (1999) The imprinting box of the mouse lgf2r gene. Nature 379, 84–88
- 26 Hatada, I. et al. (1997) Aberrant methylation of an imprinted gene U2af1-rs1 (SP2) caused by its own transgene. J. Biol. Chem. 272, 9120–9122
- 27 Bird, A.P. (1992) The essentials of DNA methylation. *Cell* 70, 5–8

- 28 Macleod, D. *et al.* (1994) Sp1 sites in the mouse *Aprt* gene promoter are required to prevent methylation of the CpG island. *Genes Dev.* 8, 2282–2292
- 29 Brandeis, M. *et al.* (1994) SP1 elements protect a CpG island from *de novo* methylation. *Nature* 371, 435–438
- 31 Hsieh, C-L. (1999) Evidence that protein-binding specifies sites of DNA demethylation. *Mol. Cell. Biol.* 19, 46–56
- 32 Matsuo, K. et al. (1999) An embryonic demethylation mechanism involving binding of transcription factors to reolicating DNA. EMBO J. 17. 1446–1453
- replicating DNA. *EMBO J.* 17, 1446–1453
 33 Jones, P.L. *et al.* (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. *Nat. Genet.* 19, 187–191
- 34 Nan, X. et al. (1998) Transcriptional repression by the methyl CpG binding protein MeCP2 involves a histone acetylase complex. Nature 393, 386–389

Copying out our ABCs the role of gene redundancy in interpreting genetic hierarchies

The complete sequence of the *Arabidopsis* genome is scheduled to be determined by the end of the year 2000. While this goal could prove to be something of a moving target (the estimated size of the genome has grown from 120 Mb to 130 Mb over the last year¹), it is clear that the majority of genes required for higher plant growth, reproduction and development will have been described within this time frame. Some of the implications of this landmark achievement are already becoming clear, even though less than a half of the genome has been sequenced.

rabidopsis has one of the most simplified plant Agenomes, with only limited evidence for segmental duplications, little repetitive DNA, and with good diploid genetics. One of the most important observations to emerge from genome studies, however, is that most Arabidopsis genes are not unique. Of 100 genes found between prolifera and GA1 on chromosome 4, for example, 65 are members of small multigene families. Based on these and other data emerging from the genome project, at least two-thirds of Arabidopsis genes have one or more closely related homologs (L. Parnell and W.R. McCombie, pers. commun.). This is especially true of key regulatory molecules such as transcription factors, receptor kinases, F-box proteins and cell-cycle regulators. For example, the MADS box gene family has at least 50 members, while there might be more than 300 receptor kinases. What are the implications of this widespread gene duplication?

It is possible that gene duplications have allowed each family member to evolve a unique function, for example in a specialized cell type. However, in many cases, family members have overlapping expression domains and so might effect the same process in the same cell type. With the advent of the polymerase chain reaction, it has become a relatively trivial matter to obtain insertional mutants in such genes via site-selected mutagenesis. The major conclusion emerging from studies of this sort is surprising: most insertional mutants have no discernible phenotype. Sometimes, the corresponding gene might be non-functional, representing a pseudogene or other evolutionary relic. However, genetrap studies reveal that many expressed genes, when disrupted, can still lack a detectable phenotype². Mutations in such genes might not be recovered because they have subtle or conditional phenotypes. Alternatively, such mutations might not be recovered because multiple closely related genes encode that function. In such cases, double, triple and sometimes even more redundant combinations of mutations might be required to reveal a mutant phenotype.

What might the consequences of this redundancy be for developmental genetics? One important ramification is in the ordering of regulatory pathways by double-mutant analyses. As any genetics textbook will point out, if singlemutant phenotypes are distinct and the double mutant resembles one of the single mutants, then the mutations are generally interpreted to affect steps in a linear pathway. If the double mutant shows an additive phenotype, then the two mutations are thought to affect separate, unrelated processes. Alternatively, the double mutant

Rob Martienssen martiens@cshl.org

Vivian Irish* vivian.irish@yale.edu

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724, USA.

*Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.

435